bounding the domination number of a tree in terms of its annihilation number

Authors

nasrin dehgardai

sepideh norouzian

seyed mahmoud sheikholeslami

abstract

a set $s$ of vertices in a graph $g$ is a dominating set if every vertex of $v-s$ is adjacent to some vertex in $s$. the domination number $gamma(g)$ is the minimum cardinality of a dominating set in $g$. the annihilation number $a(g)$ is the largest integer $k$ such that the sum of the first $k$ terms of the non-decreasing degree sequence of $g$ is at most the number of edges in $g$. in this paper, we show that for any tree $t$ of order $nge 2$, $gamma(t)le frac{3a(t)+2}{4}$, and we characterize the trees achieving this bound.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

bounding the rainbow domination number of a tree in terms of its annihilation number

a {em 2-rainbow dominating function} (2rdf) of a graph $g$ is a function $f$ from the vertex set $v(g)$ to the set of all subsets of the set ${1,2}$ such that for any vertex $vin v(g)$ with $f(v)=emptyset$ the condition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled, where $n(v)$ is the open neighborhood of $v$. the {em weight} of a 2rdf $f$ is the value $omega(f)=sum_{vin v}|f (v)|$. the {em $2$-r...

full text

Bounding the Domination Number of a Tree in Terms of Its Annihilation Number

A set S of vertices in a graph G is a dominating set if every vertex of V − S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we show that for a...

full text

Bounding the Rainbow Domination Number of a Tree in Terms of Its Annihilation Number

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ω(f) = ∑ v∈V |f(v)|. The 2-rainbow domination number of a graph G, denoted by γr2...

full text

Edge 2-rainbow domination number and annihilation number in trees

A edge 2-rainbow dominating function (E2RDF) of a graph G is a ‎function f from the edge set E(G) to the set of all subsets‎ ‎of the set {1,2} such that for any edge.......................

full text

Relating the annihilation number and the 2-domination number of a tree

A set S of vertices in a graph G is a 2-dominating set if every vertex of G not in S is adjacent to at least two vertices in S. The 2-domination number γ2(G) is the minimum cardinality of a 2-dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the nondecreasing degree sequence of G is at most the number of edges in G. The conjectu...

full text

My Resources

Save resource for easier access later


Journal title:
transactions on combinatorics

Publisher: university of isfahan

ISSN 2251-8657

volume 2

issue 1 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023